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Abstract. Array redistribution is required often in programs on distributed memory parallel computers.
It is essential to use efficient algorithms for redistribution; otherwise the performance of the programs
will degrade considerably. The redistribution overheads consist of two parts: index computation and inter-
processor communication. In this paper, by using a notation for the local data description called an LDD,
we propose a framework to optimize the array redistribution algorithm both in index computation and
inter-processor communication. That is, our work makes an effort to optimize not only the computation
cost but also communication cost for array redistribution algorithms. We present an efficient index
computation method and generate a schedule that minimizes the number of communication steps and
eliminates node contention in each communication step. Some experiments show the efficiency and
flexibility of our techniques.
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1. Introduction

Array redistribution problem has recently received considerable attention. This
interest is motivated largely by the HPF [8] programming style, in which scientific
applications are decomposed into phases. At each phase, there is an optimal dis-
tribution of arrays onto the processor grid. Many applications and kernels, such as
(ADI) Alternating Direction Integration, 2D (FFT) Fast Fourier Transform and sig-
nal processing, require different array distributions at different computation phases
for efficient execution on distributed memory machines. Because the optimal distri-
bution changes from phase to phase, array redistribution turns out to be a critical
operation.
Basically, the redistribution algorithms consist of two parts: index computa-

tion and inter-processor communication. The index computation overheads are
incurred when each processor computes indices of array elements that are to be
communicated with the other processors, and designates the destination proces-
sor numbers of such array elements. The communication overheads are incurred
when the processors exchange array elements. These include software start-up
overheads for invocation of the send/receive system calls, transmission costs for
sending data over the interconnection network, and overheads due to the node
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contention. Our previous work attempted to reduce the index computation over-
heads for two-dimensional redistribution [5, 6]. In this paper, we will extend the
algorithms to any multi-dimensional redistribution problem. On the other hand,
without proper communication scheduling in a redistribution algorithm, the com-
munication contention may occur, which increases the communication waiting time.
In order to solve this problem, in this paper, we also propose a technique to sched-
ule the communication so that it becomes contention-free. Our approach initially
generates a communication table to represent the communication relations among
sending nodes and receiving nodes. According to the communication table, we
then generate another table named communication scheduling table. Each column
of communication scheduling table is a permutation of receiving node numbers in
each communication step. Thus the communications in our redistribution algorithm
are contention-free.
The remainder of the paper is organized as follows. Section 2 discusses some

important related work in this area. In Section 3, we discuss our local data descrip-
tion notation called LDD. Section 4 proposes the generalized redistribution algo-
rithm and Section 5 is the communication scheduling algorithm, both based on the
LDDs. Section 6 gives some experimental results for our algorithm and compares
the efficiency and flexibility with other work. Finally, we conclude this paper and
discuss possible future extensions to our work in Section 7.

2. Related work

Any technique that handles HPF array assignments [11, 14, 26, 29] can be used to
compile redistribution: the induced communication is one of an array assignment
A = B, where B is mapped as the source and A as the target. However, it is not clear
that any of the currently implemented compilers have efficient techniques to handle
all the regular distributions possible for A and B. Considering only the problem of
data redistribution allows us to use many optimizations that may not be applicable
in a general compiler framework. Another major obstacle in trying to use current
compiler techniques is that they cannot handle the given statement if A and B are
distributed on (possibly overlapping) subsets of processors.
Thakur et al. [27, 28] considered a redistribution library for changing the distri-

bution of arrays on a given set of processors. The methods proposed treat possi-
ble source-target distributions in a special pairwise manner—redistribution between
cyclic(x) and cyclic(k ∗ x) in one dimension. This prevents them from handling very
general source-target distributions in an efficient manner. Further, they proposed an
expensive solution for multi-dimensional redistributions. They consider such redis-
tributions to be composed of a series of one-dimensional redistributions, which can
lead to a considerable amount of unnecessary communication.
A redistribution technique based on the descriptors called pitfalls has been

devised in [23]. It can treat arbitrary source and target processor sets. However,
the work has no capability of solving more complex redistribution applications,
such as shape changing redistribution—that is, either the source processor grid is
different from the target processor grid, or at least one dimension of the array
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is collapsed before or after redistribution. In such a case, an expensive run-time
resolution approach is used. Further, the approach used for multi-dimensional
array redistribution involves a series of one-dimensional redistributions, which can
be costly.
Chung et al. presented a basic-cycle calculation technique to efficiently perform

cyclic�x� to cyclic�y� redistribution [2]. Their main idea is to develop closed forms
for computing source/destination processors of some specific array elements in a
basic-cycle, which is defined as lcm�x� y�/gcd�x� y�. These closed forms are then
used to efficiently determine the communication sets of a basic-cycle. Then they
presented an extended technique called generalized basic-cycle calculation method to
perform a cyclic�x� over P processors to cyclic�y� over Q processors redistribution
[9]. In this method, a generalized basic-cycle is defined as lcm�xP� yQ�/�gcd�x� y� ×
P� in the source distribution and lcm�xP� yQ�/�gcd�x� y� × Q� in the destination
distribution. From the source/destination processor/data sets of array elements in
the first generalized basic-cycle, a packing/unpacking pattern tables to minimize the
data-movement operations was constructed.
Many researches have concentrated mainly on the efficient index computation for

generating the communication messages to be exchanged by the processors involved
in the redistribution [1, 15, 16, 20, 21]. However, the question of how to efficiently
schedule the messages has received little attention. The following are some works
concerned with the communication optimization in redistribution.
Lim et al. [17, 18] developed the algorithms that redistribute an array from one

block-cyclic scheme to another, where the source and target schemes have the spe-
cial relation. Their framework is based on a generalized circulant matrix formalism.
Through the transform of the rows/columns of the matrix, data communication is
performed in a conflict-free manner using direct, indirect, and hybrid algorithms. In
a direct algorithm, a data block is transferred directly to its destination processor. In
an indirect algorithm, data blocks are moved from source to destination processors
through intermediate relay processors. The relay processors combine data blocks
with the same destination. A hybrid algorithm is a combination of both direct and
indirect algorithms. In their subsequent work [22], Park et al. proposed an extended
algorithm that reduces the overall time for communication by considering the data
transfer, communication schedule, and index computation costs.
Kalns and Ni [13] presented a technique for mapping data to processors in order

to minimize the total amount of data that must be communicated during redistri-
bution. A multi-phase redistribution approach is suggested in [10]. Kaushik et al.
used the tensor product representation of data distributions and the network con-
tention model by expressing the communication as a sequence of permutations,
each of which can be executed in a fixed number of contention-free steps. They
developed a multi-phase strategy which performs the redistribution as a sequence
of redistributions such that the total cost of the sequence is less than that of direct
redistribution. This idea is partly applied in our optimal redistribution algorithm.
Desprez et al. [4] proposed an algorithm for the scheduling of those messages:

how to organize the message exchanges into “structured” communication steps that
minimize contention. They built a scheduling for moving from a cyclic�r� distri-
bution on a P-processor grid to a cyclic�s� distribution on a Q-processor grid for
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a one-dimensional redistribution, where the values of P�Q� r� and s are arbitrary.
They considered the size of the communication messages as a term of scheduling.
However, they did not give a description of how to get the information about the
sources and destinations of communication and the message sizes.
Most works mentioned above have achieved efficiency in one aspect: either index

computation optimization or communication optimization. However, they have
not developed techniques which reduce overheads both in index computation and
inter-node communication. Our aim in this paper is to extend the concepts and
results presented in our previous work [5–7], in order to provide a framework for
all efficient data redistribution—both in index computation and communication
scheduling.

3. Redistribution based on local data descriptor

3.1. The redistribution problem

Motivated by the need for the redistribution described in Section 1, we define the
regular redistribution problem [27]. A redistribution � is the set of routines that
change the distribution schemes such that, given a multi-dimensional array A on
a set of source processors �s with distribution �s, transfer all the elements of the
array to a set of target processors �t with a target distribution �t . In a general case,
�s and �t can specify arbitrary regular data distributions along each dimension of
the array. Therefore, the redistribution routines need to figure out exactly what data
needs to be sent(received) by each source(target) processor.
It is possible to use a naive approach to perform redistribution. In this approach,

at the sending phase, each processor scans its local array, determines the global
index from the local index for the source distribution, the destination processor
for that array element under the target distribution and inserts the element into a
buffer reserved for that destination processor. After all the local array elements are
scanned and inserted into buffers, a possibly empty buffer is sent to and received
from every processor other than itself. The receiving phase is symmetric to the
sending phase.
This method involves multiple conversions among global, local, and processor

indices for every local array element, which has an unacceptably high indexing and
communication overhead thus resulting in low efficiency.
In the following discussion, we assume that the global array size is denoted

as G1 × · · · × Gδ and the local array size is denoted as L1 × · · · × Lδ, where δ
is the array dimension. All arrays are indexed starting from 1 while processors
are numbered starting from 0. The distribution schemes allowed in a dimension
are BLOCK�CYCLIC�CYCLIC�b� and All (* in HPF). p processors compose a
δ-dimensional processor grid p1 × · · · × pδ where pi�1 ≤ i ≤ δ� is the number of
processors of the i-th dimension. myid is the logical number of the processor exe-
cuting the program. Because of the limitation of the paper length, we do not give
the proofs for the lemmas and theorems in the following sections. Details on proof
can be found in [7].
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3.2. Local data descriptor (LDD) for one-dimensional arrays

Roughly, to perform a redistribution, for any source-target processor pair, one has
to look at the set of elements owned by the source processor ps before redistribution
(based on the source distribution scheme �s) and the set of elements owned by the
target processor pt after redistribution (based on the target distribution �t). The
intersection of these sets is the data that needs to be transferred between the source-
target processors. The LDD representation is particularly useful to determine which
pair of source-target processors need to communicate.
We first develop the LDD representation for regular distributions of one-

dimensional arrays, then extend it to a multi-dimensional case.

Definition 1 A 4-tuple d = �o� b� s� n� is called a LDD (Local Data Descriptor)
which describes a set of the global array index for a particular processor. Intuitively,
d represents a finite set of equally spaced, equally sized blocks of elements, where

— o is the starting index of the global array elements distributed onto the
processor;

— b is the length of the block;
— s is the stride between two consecutive blocks; and
— n is the number of blocks distributed on to the processor.

Consider a one-dimensional array A of size G. Using the notion of LDD, it is
possible to represent the set of elements of A owned by a processor under any
regular distribution. An LDD d = �o� b� s� n� corresponds a set of the global array
index defined as follows:

S�d	 = 
i � o + s ∗ u ≤ i < o + b + s ∗ u� 0 ≤ u < n" (1)

The j-th �0 ≤ j < n� block of LDD d (denoted by bj) is given by

bj = �o + s ∗ j� o + s ∗ j + �b − 1��
= 
i�o + s ∗ j ≤ i < o + s ∗ j + �b − 1�" (2)

From the above definitions, we can conclude that any block-cyclic distribution
scheme for an array can be expressed by using LDDs. For example, let p be the
number of processors and the global array size G be the multiple of p, then BLOCK
distribution schemes can be expressed by LDDs as dk = ��G/p� ∗ k+ 1�G/p� 1� 1�,
CYCLIC(4) can be expressed as dk = �4 ∗ k + 1� 4� 4 ∗ p� � G

4∗p ��, and CYCLIC is
expressed as dk = �k + 1� 1� p�G/p�, for k-th processor.

3.3. The intersection of LDDs

Let d1 = �o1� b1� s1� n1� and d2 = �o2� b2� s2� n2� be two LDDs, and their cor-
responding array index set be S�d1	 and S�d2	 (namely LDD set) respectively.
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The intersection and union of S�d1	 and S�d2	 are as follows:

S�d1	 ∩ S�d2	 = 
i � max�o1 + s1 ∗ u1� o2 + s2 ∗ u2�
≤ i < min��o1 + s1 ∗ u1� + b1� �o2 + s2 ∗ u2� + b2��
0 ≤ u1 < n1� 0 ≤ u2 < n2" (3)

S�d1	 ∪ S�d2	 = 
i � �o1 + s1 ∗ u1 ≤ i < o1 + b1 + s1 ∗ u1�
∨�o2 + s2 ∗ u2 ≤ i < o2 + b2 + s2 ∗ u2��
0 ≤ u1 < n1� 0 ≤ u2 < n2" (4)

The examples of the LDDs and their intersections and unions shown in Fig. 1 may
help to understand the LDD notion easily.

Lemma 1 Let d1 = �o1� b1� s1� n1� and d2 = �o2� b2� s2� n2�.

S�d1	 ∩ S�d2	 = � ⇐⇒ ∀u1� u2�0 ≤ u1 < n1 ∧ 0 ≤ u2 < n2��
max�o1 + s1 ∗ u1� o2 + s2 ∗ u2� ≥ min��o1 + s1 ∗ u1� + b1� �o2 + s2 ∗ u2� + b2�"

Lemma 2 If two blocks which belong to two LDDs d1 = �o1� b1� s1� n1� and d2 =
�o2� b2� s2� n2�, respectively, have some common elements; that is, there exist u∗

1 and
u∗
2 such that

max�o1 + s1 ∗ u∗
1� o2 + s2 ∗ u∗

2� < min�o1 + b1 + s1 ∗ u∗
1� o2 + b2 + s2 ∗ u∗

2��

then all the successive block pairs of stride s = lcm�s1� s2� also have the common
elements.

 9 10 1112 5  6  7  8 1  2   3  4 13 1415 161718 192021 2223 24

Global array ( P = 4)

 1  2   3 14 1513

 5  6  7  8 21 2223 24

 1  5  9 13 17 21

 1 13

 5 21

 5  6  7  8 21 2223 24 1  9 13 17 21

cyclic(3):
d0 = (1,3,12,2)

cyclic(4):
d1 = (5,4,16,2)

cyclic:
d’0 = (1,1,4,6)

d0  d’0

d1  d’0

d1 

 

d’0

∩

∩

∪

Figure 1. The example of the LDDs and their intersection and union on 4 processors.
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Proof: Refer to [7].

From the above lemmas we can conclude that the intersection of two LDD sets
is the unions of some LDD sets whose stride is s. We have the following theorem.

Theorem 1 S�d1	 ∩ S�d2	 = S�d�1�	 ∪ · · · ∪ S�d�m�	 where d�k��1 ≤ k ≤ m� is a LDD
if ∃�u�k�

1 � u
�k�
2 � such that

max�o1 + s1 ∗ u�k�
1 � o2 + s2 ∗ u�k�

2 � < min�o1 + b1 + s1 ∗ u�k�
1 � o2 + b2 + s2 ∗ u�k�

2 ��
�0 ≤ u

�k�
1 < m1� 0 ≤ u

�k�
2 < m2�"

The elements of d�k� are defined as

• o�k� = max�o1 + s1 ∗ u�k�
1 � o2 + s2 ∗ u�k�

2 �
• b�k� = min�o1 + b1 + s1 ∗ u

�k�
1 � o2 + b2 + s2 ∗ u

�k�
2 � − max�o1 + s1 ∗ u

�k�
1 ,

o2 + s2 ∗ u�k�
2 �

• s�k� = s = lcm�s1� s2�
• n�k� = min�e1 − e

�k�
1 � e2 − e

�k�
2 � div s + 1 = min�s1 ∗ �n1 − u

�k�
1 − 1�� s2 ∗ �n2 −

u
�k�
2 − 1�� div s + 1

where e1 and e2 are the last indices of d1 and d2:

e1 = o1 + b1 − 1 + s1 ∗ �n1 − 1�� e2 = o2 + b2 − 1 + s2 ∗ �n2 − 1�

e
�k�
1 and e

�k�
2 are the last indices of the blocks u�k�

1 in d1 and u
�k�
2 in d2:

e
�k�
1 = o1 + b1 − 1 + s1 ∗ u�k�

1 � e
�k�
2 = o2 + b2 − 1 + s2 ∗ u�k�

Proof: Refer to [7].

For the sake of simplicity, in the following discussion we will use notations
d1 ∩ d2 and d1 ∪ d2 to express the same operations onto their corresponding sets,
S�d1	 ∩ S�d2	 and S�d1	 ∪ S�d2	, respectively. For example, the above theorem can
be described as

d1 ∩ d2 = d�1� ∪ · · · ∪ d�m�" (5)

3.4. Local data descriptor for multi-dimensional arrays

Until now we have only considered one-dimensional cases of our LDD representa-
tions. Extending these to the multi-dimensional case is trivial and can be done by
simply looking at the representations for each dimension and computing the inter-
sections on them independently. Accordingly we can define the Local Data Descrip-
tor of the multi-dimensional case as a 4-tuple of vectors, where each vector is com-
posed of the corresponding elements of one-dimensional LDDs.
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A: 16 × 24 3 × 2                 P = 

D = ((1,1),(3,4),(9,8),(2,3)) = (1,3,9,2) × 

 

(1,4,8,3)

Figure 2. The LDD for multi-dimensional array.

For a multi-dimensional LDD D, its index set S�D	 is defined as the Cartesian
product of the index sets of each of its dimensional LDD di (Fig. 2):

Definition 2 A multi-dimensional LDD is defined as

D = � �O� �B� �S� �N��

where �O = �o1� " " " � oδ�� �B = �b1� " " " � bδ�� �S = �s1� " " " � sδ�� �N = �n1� " " " � nδ�, and
δ is the number of dimensions. For 1 ≤ i ≤ δ� di = �oi� bi� si� ni� is called the LDD
of i-th dimension.

S�D	 = S�d1	 × S�d2	 × · · · × S�dδ	"

We will abbreviate the above formula as

D = d1 × d2 × · · · × dδ" (6)

Also, the intersection of two multi-dimensional LDDs can be computed by a
dimension-by-dimension intersection. We have the following corollaries.

Corollary 1

S�Di	 ∩ S�Dj	 = �S�di1	 × · · · × S�diδ	� ∩ �S�dj1	 × · · · × S�djδ	�
= �S�di1	 ∩ S�dj1	� × · · · × �S�diδ	 ∩ S�djδ	�"
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That is, the intersection of two LDDs is the Cartesian product of the intersection
of each dimensional LDDs. We can abbreviate this result as

Di ∩ Dj = �di1 × · · · × diδ� ∩ �dj1 × · · · × djδ�"
= �di1 ∩ dj1� × · · · × �diδ ∩ djδ�"

Corollary 2

Di ∩ Dj �= � ⇐⇒ �di1 ∩ dj1 �= �� ∧ · · · ∧ �diδ ∩ djδ �= ��

4. Redistribution algorithm based on LDD

We assume that, before the redistribution, a global array A is distributed into the
local arrays according to the source distribution scheme �s and the source processor
grid �s. In other words, the global array A is composed of the local arrays which
are owned by each processor. A can also be represented as a multi-dimensional
LDD

D = � �O� �B� �S� �N��

where �O = �1� 1� " " " � 1�, �B = �1� 1� " " " � 1�, �S = �1� 1� " " " � 1�, �N = �G1� " " " �Gδ�.
Then it can be denoted as

D = D0 ∪ D1 ∪ · · · ∪ Dp−1�

where Dk� k ∈ 
0� " " " � p − 1 is the local LDD of each processor under �s, and
Di ∪ Dj is the abbreviated form of S�Di	 ∪ S�Dj	. On the other hand, after the
redistribution, the global array A can also be composed of the local arrays owned
by each processor, which A is distributed into the local arrays according to the
destination distribution scheme �t and the destination processor grid �t . It also
can be denoted as

D = D̃0 ∪ D̃1 ∪ · · · ∪ D̃p̃−1�

where D̃k� k ∈ 
0� " " " � p̃ − 1 is the local LDD of each processor under the target
distribution. Because

D = D ∩ D = �D0 ∪ · · · ∪ Dp−1� ∩ �D̃0 ∪ · · · ∪ D̃p̃−1�

=
p−1⋃
k=0

Dk ∩ �D̃0 ∪ · · · ∪ D̃p̃−1�"

That is, for the source processor Pk, if we get the intersections of Dk and each
destination index set D̃i, we can obviously know which array elements should be
sent to which processor.
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Similarly, we can also get the following formula,

D =
p̃−1⋃
k=0

D̃k ∩ �D0 ∪ · · · ∪ Dp−1�"

That means at the receiving phase, for the destination processor P̃k, the elements
received from the source processor Pj are intersections of D̃k and Dj . This results
in the following theorem.

Theorem 2 Let Di be the LDD of a source processor Pi under the source distri-
bution scheme �s, and D̃j be the LDD of a target processor P̃j under the target
distribution scheme �t . In a redistribution from ��s��s� to ��t ��t�, where �s

and �t are the source and target processor set respectively, the data that each pro-
cessor Pi �Pi ∈ �s� should communicate with target processors P̃j� �P̃j ∈ �t�,
are indicated by the intersection of Di and D̃j .

Figure 3 shows an example for the intersection of a global array A’s LDDs before
and after redistribution, where �s = 4 × 1��s = �block� ∗�, and �t = 2 × 2��t =
�block� block�.
The redistribution routine includes two parts, the sending routine and receiving

routine. The sending routine is executed by the source processors. It analyzes the
communication requirements for each array and packs the message into a contigu-
ous buffer for each destination processor that needs data from the calling source
processor; it then sends message to the corresponding destination processor. The
receiving routine essentially does the reverse.
The algorithm frameworks of the sending and receiving routines are shown in

Figures 4 and 5, respectively.

A A

Ps = ×4 1 Pt = ×2 2
Ds block= ( ,*) Dt block block= ( , )

before redistribution

= ∩ 

 after redistribution intersection

D 0 D1

D 2 D 3

D 0

D1

D 2

D 3

D D D D0 2 0 3∩ = ∩ = φ

D D1 0∩

D D2 2∩

D D3 2∩

D D0 1∩

D D1 1∩

D D2 3∩

D D3 3∩

D D D D1 2 1 3∩ = ∩ = φ

D D D D2 0 2 1∩ = ∩ = φ D D D D3 0 3 1∩ = ∩ = φ

D D0 0∩

Figure 3. Intersection of a global array A’s LDDs before and after redistribution on 4 processors.
�s = 4 × 1��s = �block� ∗�, and �t = 2 × 2��t = �block� block�.
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Algorithm 1 Send routine

if myid ∈ �s then
get my source LDD D′ = � �O′� �B′� �S′� �N ′�
/* D′ is determined by myid, the source distribution scheme */
for P̃k ∈ �t , k = 0� 1� " " " � p̃ − 1
get each target LDD D′′

0�D
′′
1� " " " �D

′′
p̃−1;

/* D′′
k is determined by Pk and the destination distribution scheme */

compute the intersection of D′ ∩ D′′
k

D1 = D′ ∩ D′′
0�D2 = D′ ∩ D′′

1� " " " �

if myid �= P̃k then
if Dk �= φ then
/* Dk is global index set, it should be converted to
local index under source distribution scheme */
convert global �o1g� " " " � oδg� to local �o1l � " " " � oδl �;
compute the local stride m1

1� " " " �m
δ
1 of

source local array As for each dimension;
pack the local Dk into buffer;
send(buffer, P̃k);

endif
endif

endfor
endif

Figure 4. The redistribution algorithm of the send routine.

5. Communication scheduling

We only optimize the cost of index computation in the algorithms shown in Figures 4
and 5, without taking into consideration the reduction of the communication cost.
Figure 6(a) shows the sequence of events that can occur during a redistribution
involving four source and four destination processors using the above redistribution
algorithm. We observed that each destination processor receives all of its messages
simultaneously; this may lead to communication contention. The communication
contention problem can be described as follows: For a set of processors, since the
receiving processor typically can receive messages from only one processor at once,
if there are more than two of sending processors they may have to wait for other
processors to complete their communication, in this case we say that the com-
munication (or node) contention occurred. The communication contention has a
deteriorating effect on the total time required for communication [7].
Using the communication scheduling we can avoid the communication contention

in redistribution operations. For instance, we can use simple schemes to get rid
of the contention shown in Fig. 6(a); the effect of such schemes is illustrated in
Fig. 6(b).
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Algorithm 2 Receive routine

if myrid ∈ �t then
allocate destination local array At;
get my destination LDD D′′ = � �O′′� �B′′� �S′′� �N ′′�!
/* D′′ is determined by myid, destination distribution scheme */
for Pk ∈ �s, k = 0� 1� " " " � p − 1
get each source LDD D′

0�D
′
1� " " " �D

′
p−1;

/* D′′
k is determined by Pk and source distribution scheme */

compute the intersection of D′ ∩ D′′
k

D0 = D′ ∩ D′′
0�D1 = D′ ∩ D′′

1� " " " �
if myid �= Pk then

if Dk �= φ then
receive(buffer, Pk);
compute the local stride m1

2� " " " �m
δ
2 of At:

unpack the buffer into At,
endif

else
/* memory copy */
convert the global index �i1� " " " � iδ� to the local index
�i1s � " " " � iδs � under the source distribution Ds,
and �i1t � " " " � iδt � under the destination distribution Dt ;
At�it� jt	 = As�is� js	;

endif
endfor

endif
if myid ∈ �s then
free(As);

endif

Figure 5. The redistribution algorithm of the receive routine.

5.1. One dimensional scheduling algorithm

The avoidance of contention for all-to-all communication is so trivial that we focus
on the contention-free communication scheduling in the case of all-to-many com-
munication in the following discussions. For one dimension, we assume that the
redistribution is processed from a cyclic(b) distribution on a p-processor grid to a
cyclic(b′) distribution on a p̃-processor grid and b = β ∗ b′(the case of b′ = β ∗ b is
similar).
We construct a communication matrix (table) COM for the redistribution ��s��s�

to ��t ��t�. A “1” in the �i� j� entry represents the fact that a processor Pi needs
to communicate to a processor Pj . That is, COM�i� j	 = 1 if and only if a processor
Pi sends data to a processor Pj . According to the usage of LDDs, let di and dj be
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(a)

(b)

Figure 6. Communication contention for array redistribution.

the LDDs of processors Pi and Pj , respectively, then

COM�i� j	 =
{

1� di ∩ dj �= �
0� di ∩ dj = �"

(7)

Our goal is to generate an algorithm that derives another table from COM , called
the communication scheduling table CS�i� k	, where 0 ≤ i < p, 0 ≤ k < � (�
is the number of communication steps), and if COM�i� j	 = 1, there exists a k,
0 ≤ k < � such that CS�i� k	 = j and each column of CS is a (partial) permutation
of processors 0� 1� " " " � p̃ − 1. Figure 7 shows the examples of the communication
table and its corresponding communication scheduling table.

Theorem 3 In a redistribution operation, if a sending processor Pi needs to send
(needs not send) a message to a receiving processor Pj , then for another sending pro-
cessor Pi′� 0 ≤ i′ < p, there certainly exists a receiving processor Pj′ such that Pi′ needs
to send (not send) a message to Pj′ , and j′ = �j + �i′ − i� ∗ b/b′� mod p̃. Using the
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Figure 7. Examples of the communication table and the communication scheduling table.



256 guo and nakata

notion of communication table, this means

COM�i� j	 = 0 �or = 1� ⇐⇒ COM�i′� j′	 = 0 �or = 1��

and j′ = �j + �i′ − i� ∗ b/b′� mod p̃.

Proof: Refer to [7].

Definition 3 According to Theorem 2, two entries �i� j� and �i′� j′� of COM are
called the symmetrical if and only if

j′ =
(
j + �i′ − i� ∗ b

b′

)
mod p̃"

Figure 8 shows two communication tables with p = p̃ = 6�� = 4 and p = p̃ = 5,
� = 3, respectively. The entries enclosed in a circle are symmetrical entries.

Corollary 3 For a sending processor Pi, if there exist j1 and j2, such that
COM�i� j1	 = 0 and COM�i� j2	 = 0 and �j2 − j1� mod p̃ = d, then for each
other sending node Pi′ , there certainly exist j′

1 and j′
2, such that COM�i′� j′

1	 = 0 and
COM�i′� j′

2	 = 0 and �j′
2 − j′

1� mod p̃ = d, where d is a constant, namely distance.

Definition 4 A scheduled sending vector of a processor Pi is a sequence of desti-
nation processors:

SVi = �Pj0� Pj1� " " " � Pj�−1
��

where COM�i� jk	 = 1, 0 ≤ k < �, � is the number of the communication steps,
jk = �j0 + k� mod �1, and ju ≺ j2v when u < v. SV k

i �= Pjk� represents the k-th
entry in vector SVi. SV

0
i is called the start element of SVi.
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Figure 8. Examples of communication tables and the symmetrical entries for one dimensional redistri-
bution. (a) cyclic�8� to cyclic�2�� P = 6. (b) cyclic�6� to cyclic�2�� P = 5.
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According to the above definition, the communication scheduling table CS is
composed of some SVi. SVi is the i-th row of CS. From Corollary 3, if the start ele-
ments of two sending vectors are different, then all the elements at the same entry
are different for these two sending vectors. Therefore in the following discussions,
we only focus on the algorithm that generates the start elements.
From Theorem 3, if COM�i0� j0	 = 1 �or = 0� for a sending node Pi0 , then

there certainly exists corresponding jk for each other sending node Pik such that
COM�ik� jk	 = 1�or = 0�� 1 ≤ k < P . These jk form a group �j0� " " " � jP−1�, called
the relative group RG.

Definition 5 Suppose J∗ is a “1” entry in the row i of COM for a sending node
Pi, the k-th “1” entry J following J∗ in the row i of COM is defined as that
COM�i� J	 = 1� J∗ ≺ J, and there exist J�1�� " " " � J�k−1� such that J∗ ≺ J�1� ≺ · · · ≺
J�k−1� ≺ J�COM�i� J�l�	 = 1� 1 ≤ l ≤ k − 1.

Algorithm 3 Because the sending vector SV can be determined according to SV 0,
we only need to find the start element SV 0

i for each sending node Pi according to
the following steps:

1. Find out a “1” entry as the first “1” entry J∗
0 for sending node P0 where

COM�0� J∗
0 	 = 1 and its relative group RG = �J∗

0 � " " " � J
∗
p−1�" (Take Fig. 8 as an

example. RG = �0� 4� 2� 0� 4� 2� and RG′ = �0� 3� 1� 4� 2� for the communication
tables shown in Fig. 8(a) and Fig. 8(b), respectively.)

2. If some J∗s in RG are equal to each other, i.e., J∗
i1

= J∗
i2

= · · · = J∗
in
� �J∗

iu
∈

RG� 0 ≤ iu < P�, then put the sending node Pi1� " " " � Pin into a sub-group SN.
Thus P sending nodes can be divided into m sub-groups SN0� " " " � SNm−1, each
sub-group SNi has the same number of elements n, where p = m ∗ n.
(For Fig. 8(a), SN0 = �P0� P3�� SN1 = �P1� P4�, SN2 = �P2� P5�.)

3. If the number of elements of all the sub-groups is one, that is, there are total p
sub-groups, then the start element of each row i is the first “1” entry J∗

i .
(For Fig. 8(b), SN0 = �P0�� SN1 = �P1�� SN2 = �P2�� SN3 = �P3�� SN4 = �P4�.
Hence the start elements are �0� 3� 1� 4� 2�.)

4. Otherwise, for the sending nodes Pi0� " " " � Pin−1
in a subgroup, the start element

is the first “1” entry, 2nd “1” entry, " " " � n-th “1” entry for the row i0� " " " � in−1,
respectively. (Hence, the start elements of �P0� P3�, �P1� P4� and �P2� P5� are
�0� 1�, �4� 5� and �2� 3�, respectively.)

5. All such sequences of the processor number which begin at the start element
SV 0 are composed of sending vectors SV, which are the rows of the scheduling
table CS.

Figure 9 gives some examples of generation of the scheduling tables from the
communication tables, according to Algorithm 3. The entries enclosed in a triangu-
lar are the start elements of the sending vectors.

Theorem 4 Any column of a CS generated from Algorithm 3 is a permutation of the
processor numbers �0� 1� " " " � p̃ − 1�.
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Figure 9. Generation of scheduling tables from communication tables.

Proof: Refer to [7].

5.2. Multi-dimensional scheduling algorithm

For a multi-dimensional case, if the redistribution is the “shape retaining” case,
it can be performed by simply looking at the representations for each dimension
and performing redistributions dimension-by-dimension independently. In this sec-
tion we only consider the “shape changing” case. For the sake of simplicity, in the
following discussion, we use 2-dimensional case to explain the multi-dimensional
redistribution problems. We assume that the processor grid is P = P1 × P2 before
the redistribution and P ′ = P ′

1 × P ′
2 after the redistribution. Hence the processor Pi

can be represented in two-dimensional coordinate, that is i = �i1� i2�.
With respect to 2D array redistribution, as we proposed in Lemma 2 of Section 3,

Di ∩ Dj �= � ⇐⇒ di1 ∩ dj1 �= � ∧ di2 ∩ dj2 �= ��

where i = �i1� i2� is the source processor number and j = �j1� j2� is the target
processor number. Using the notation of the communication table COM , it can be
represented as

COM�i� j	 = COM��i1� i2�� �j1� j2�	 = COM1�i1� j1	 ∧ COM2�i2� j2	�
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where COM1 and COM2 are the communication tables corresponding to the first
and second dimension, respectively.
The algorithm for determining the start element of each sending node is com-

posed of the 1D algorithms applied repeatedly. The algorithm is as follows.

Algorithm 4 Similar to Algorithm 3, we also consider the start elements only.

1. First consider COM1. Applying Algorithm 3, we can get the start elements
�J01 � " " " � JP1−1

1 � for I01 � " " " � IP1−1
1 , such that,

COM��I01 � i2�� �J01 � j2�	� " " " � COM��IP1−1
1 � i2�� �JP1−1

1 � j2�	
form P1 number of sub-communication tables. All these sub-communication
tables are equal to another communication table COM2 but no overlapping rows
and columns in COM .

2. Then consider sub-communication tables

COM��I01 � i2�� �J01 � j2�	� " " " � COM��IP1−1
1 � i2�� �JP1−1

1 � j2�	"
Applying Algorithm 3 again,

2.1. if P2 ≤ P ′
2 we can directly apply Algorithm 3 to tables

COM��I01 � i2�� �J01 � j2�	� " " " � COM��IP1−1
1 � i2�� �JP1−1

1 � j2�	�

and obtain the start elements �J02 � " " " � JP2−1
2 � for I02 � " " " � IP2−1

2 .
2.2. If P2 > P ′

2, it is possible there are not enough columns to get start
elements in COM2, then we compound two sub-communication tables
COM��I1� i2�� �J1� j2�	 and COM��I1� i2�	, �Ĵ1� j2�	 into a sub-table and use
the Algorithm 3 to it, where COM1�I1� J1	 = 1 and COM1�I1� Ĵ1	 = 1 and
Ĵ1 is the first “1” entry following J1.

3. The pairs �Ju1 � Jv2� are the start elements for each sending node �Iu1 � Iv2��0 ≤
�u� v� < �P1� P2��.
For example, consider an array redistribution (BLOCK, BLOCK) to (BLOCK,

BLOCK) on P = 2 × 4 to P ′ = 4 × 2. The sub-communication tables COM1
and COM2, the communication table COM , and the CS table derived from
Algorithm 4 are shown in Fig. 10(a), (b), (c) and (d), respectively, where
COM��i1� i2�� �j1� j2�	 and CS��i1� i2�� k	 are represented as COM�4i1 + i2� 2j1 + j2	
and CS�4i1 + i2� k	.

6. Experimental results

For purpose of performance evaluation of our optimized redistribution algorithms
and comparison with other redistribution work, in this section, we present the exper-
imental evaluation for these techniques. All the experiments are implemented on
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Figure 10. Example for multi-dimensional redistribution.

CP-PACS [3], a 2048-processor MIMD distributed memory parallel computer devel-
oped at the University of Tsukuba. The node programs are written in C, using
PARALLELWARE3 programming environment, a commercially available package
that extends C and FORTRAN77 with a portable communication library.

6.1. Experimental results for efficient index computation

The redistribution routines implemented on CP-PACS require information about
the source and target processor grids and source and target distribution schemes
for each of arrays being redistributed. To compare with other redistribution works,
we also implemented Thakur’s one-dimensional algorithm described in [27, 28] and
the naive approach described in Section 3. Because Thakur’s algorithm can only
handle a “shape retaining redistribution” and only focuses on index computation
optimization, the routines used in this subsection are only optimized in index com-
putation. The experimental results of communication scheduling are shown in next
subsection.
Figure 11 shows the results of the one-dimensional redistribution from

CYCLIC(12) to CYCLIC(5) with the data size n = 120�000, where Naive,
Talgo, and Galgo indicate the naive approach, Thakur’s algorithm and our algo-
rithm, respectively. The main difference of these algorithms is that the Thakur’s
algorithms do the redistribution from CYCLIC(12) to CYCLIC(5) through two
phases—first the redistribution from CYCLIC(12) to CYCLIC(60), then from
CYCLIC(60) to CYCLIC(5)4, but ours do the redistribution from CYCLIC(12) to
CYCLIC(5) directly.
The above figure suggests that our algorithm can get much better performance

than the naive approach. On the other hand, with respect to the redistribution
from CYCLIC(x) to CYCLIC(y), if max�x� y� is not a multiple of min�x� y�, our
algorithm gets the better performance than Thakur’s algorithm because data is
communicated twice. However, when x is a multiple of y, the performance of our
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Figure 11. Performance of the three algorithms for one-dimensional redistribution from CYCLIC(12)
to CYCLIC(5) on CP-PACS(data size: 120�000).

algorithm is almost close to Thakur’s algorithm because it can do the redistribution
directly.
For the multi-dimensional redistribution, we first perform an experiment of exe-

cuting the “shape retaining” redistribution from (BLOCK, BLOCK) to (CYCLIC,
CYCLIC), as the typical case for redistribution in two dimensions with the array
size of 1024 × 1024. Figure 12 shows the results of this experiment by using the
algorithms Naive, Talgo, and Galgo.
To show the efficiency and flexibility for the “shape changing” redistribution,

we performed experiments on such cases as when either the source processor grid
differs from the target processor grid, and when at least one dimension of the array
is collapsed before or after redistribution. Table 1 shows some experimental results
with array sizes of 300 × 300 and 600 × 600. A comparison of performance is made
between the naive approach and our algorithm.

Figure 12. Performance of the three algorithms for the “shape retaining” redistribution from
(BLOCK,BLOCK) to (CYCLIC,CYCLIC) on CP-PACS (data size: 1024 × 1024).
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Table 1. Results for the “shape changing” redistribution on CP-PACS (time in seconds)

Redistributions Array Size Ps Pt Naive Galgo

(CYCLIC, BLOCK) 300 × 300 3 × 3 5 × 2 0.46 0.11
to (BLOCK, CYCLIC) 6 × 12 10 × 5 0.27 0.14

15 × 10 5 × 6 0.32 0.22
600 × 600 3 × 3 5 × 2 2.21 0.60

6 × 12 10 × 5 1.47 0.48
15 × 10 5 × 6 1.21 0.54

(BLOCK, CYCLIC) 300 × 300 4 × 5 10 × 1 0.24 0.03
to (BLOCK,*) 10 × 6 120 × 1 0.40 0.13

10 × 20 200 × 1 0.27 0.21
600 × 600 4 × 5 10 × 1 1.09 0.11

10 × 6 120 × 1 1.01 0.17
10 × 20 200 × 1 0.89 0.28

(BLOCK,*) 300 × 300 20 × 1 1 × 20 0.19 0.09
to (*,BLOCK) 100 × 1 1 × 50 0.21 0.17

150 × 1 1 × 150 0.17 0.14
600 × 600 20 × 1 1 × 20 1.89 0.63

100 × 1 1 × 50 0.98 0.43
150 × 1 1 × 150 0.85 0.36

These figures and table indicate:

• Our algorithm works better than the naive algorithm for the “shape retaining
redistribution,” irrespective of the number of processors or data size. In addi-
tion, our algorithm can get higher performance than Thakur’s algorithm in a
general sense.

• For the “shape changing redistribution,” our algorithm works well for all of the
redistributions on arbitrary processor sets. It performs better than the naive algo-
rithm, and the speedup ranges from 200% to 900%.

To estimate the performance of our algorithms on a distributed environment,
we also conducted some experiments on a workstation cluster connected with net-
work [6]. The results of the experiments match the one on a massively parallel
computer.

6.2. Experimental results for communication scheduling

In this subsection, we concentrate on the results that demonstrate the usefulness of
the communication scheduling optimizations we presented in Section 5. We use our
earlier algorithm without scheduling for the sake of comparison.
We carried out an experiment in one-dimensional case with a communication

step � = 3. Figure 13 shows the result of the experiment. The curve “without
scheduling” represents our redistribution algorithm without a communication
scheduling, and “with scheduling” represents the algorithm with a communication
scheduling optimization presented in Section 5.
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Figure 13. Comparison of the performance with and without communication scheduling in the redistri-
bution algorithm on CP-PACS (data size: 120,000, � = 3).

Figure 13 shows that the algorithm with the communication scheduling opti-
mization achieves better performance than the former algorithm. The performance
improvement becomes more appreciable as the number of processors increases.
This means it is vital to use communication scheduling in redistribution algorithms.

7. Conclusions and future work

In this paper, we have focused on producing a framework of optimization both in
index computation and in inter-processor communication for redistribution algo-
rithms. In order to build different data for each pair of processors that must com-
municate, and further guarantee there is no more redundant data to be commu-
nicated, we have presented a model to describe the local data distributed onto
the local memories. The array elements distributed onto a processor can be repre-
sented by a 4-tuple in each dimension. The 4-tuple, called the Local Data Descriptor
(LDD), can describe all of the block-cyclic distribution schemes. Our redistribution
is based on the notion of LDD and the intersection of two LDDs. The communica-
tion optimization is achieved through scheduling communication to avoid the node
contention.
In the future, we would like to extend our scheduling algorithm to the one which

considers the communication message size, because different sending processors
may send the messages in different lengths to receiving processors [4]. It is easy to
add such an extention into our algorithms because the block length of the intersec-
tion of two LDDs is the message size, which can be the entries of the communication
table.

Notes

1. Because we assume b = β ∗ b′ in p. 260 all sending processors redistribute data to some neighbouring
receiving processors.
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2. ≺ is a special ascending order designated as “<” but taken a round of p̃. For example, if p̃ = 6 and
j0 = 3, then 3 ≺ 4 ≺ 5 ≺ 0 ≺ 1 ≺ 2.

3. PARALLELWARE is a trademark of Nippon Steel Corporation. The trademark of the same software
in America is Express.

4. Because their algorithms can only redistribute between CYCLIC(kx) and CYCLIC(x).
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