
Making It Realtime: Exploring the use of optimized realtime
frameworks for education and the web

 Turlif Vilbrandt, Chris Calef, Mythworks, USA/Japan; Carl Vilbrandt, University of Aizu, Japan; Janet
Goodwin, Aizu History Project, USA/Japan; James Goodwin, University of California, USA

The utility of 3D game engines for delivery of educational content is explored and developed.
Emphasis is placed on the difference between polygonal surface representation and actual 3D simulation,
taking into account object properties and physical characteristics. Through a combination of the open-
source Quake engine and the Povray raytracing engine, a Japanese temple is simulated in two levels of
detail and made available both through an interactive realtime simulation and a more detailed but slower
raytraced environment. Tools are presented for web-based access to a simulation database, which can be
used to design and modify 3D environments.

Keywords: Simulated Environments, Virtual Reality, Realtime, 3D Games, 3D Engines, 3D Web Graphics,
Quake, Povray

http://www.myth-works.com/simtools
http://www.u-aizu.ac.jp/~vilb/aizu_history

Abstract

Administrator
Submitted to IEEE CG&A

Making It Realtime: Exploring the use of optimized realtime
frameworks for education and the web

 Turlif Vilbrandt, Chris Calef, Mythworks, USA/Japan; Carl Vilbrandt, University of Aizu, Japan; Janet
Goodwin, Aizu History Project, USA/Japan; James Goodwin, University of California, USA

The web offers unprecedented
opportunities for dissemination of information of all
kinds. From its humble beginnings in hypertext and
2D graphics, improvements in bandwidth and
computer performance have allowed web servers
to provide full 3D content. However, these very
improvements in hardware are bringing to light the
weaknesses of most current web 3D software.
Specifically, reliance on polygonal surface
representation as the industry standard for
visualization of 3D environments imposes severe
limitations on potential accuracy of a virtual
environment. Additionally, most VRML and other
web 3D players suffer from difficult and counter-
intuitive user interfaces and inflexible coding
environments.

In our research, we have focused on the
use of optimized realtime game engines as an
alternative method of viewing 3D content. These
applications provide built-in logic to handle basic
world properties like gravity and collision detection.
In addition, 3D games provide highly intuitive and
efficient user interfaces, advanced network code for
multi-user distributed environments, and an open
coding environment allowing unlimited
customization.

3D Gaming = Usability = Learning

Taking advantage of realtime 3D game
paradigms yields several advantages; increased
user enjoyment, increased use of the application,
and transparent learning. Games have been
designed from the ground up for usability and fun.
The more hours a user spends in a game
environment, the better it will tend to do in the
market place, and the more money it will make. As
a result, the primary focus for most game
companies is on making 3D environments that are
highly functional, easy to learn, and enjoyable to
use.

By embracing game code and techniques a
planned application can instantly come up to speed
with a usable, sophisticated interface, in an
environment that has proven staying power. Users

come back to their favorite games again and again.
Game techniques in conjunction with modeling and
simulation can yield a very interesting potential
byproduct for academic applications -- transparent
learning. If a user is constantly interacting with a
program for enjoyment he or she will pick up a
variety of skills and knowledge without approaching
it as a teaching experience, and in some cases
without even realizing it. Currently, we are working
with the Oregon Center for Applied Science on a
grant for the National Institute of Health that
involves teaching children how to navigate and
cross streets safely. One of the goals of the
program is to make children feel as though they are
playing a game, allowing the skills to be learned
through modeling and simulation. The more a
child, or any user, comes back to such an
environment, the more the modeling is reinforced
and the more the skills become "second nature".
Making sure an environment is "playable" goes a
long way toward this goal. This has also been
demonstrated in flight-simulator-based games in
which users who fly fighter jets in air combat and
other such engaging simulations demonstrate a
highly accelerated learning curve when learning to
fly a real plane.[1] There is at times a balance that
must be struck for an application, between accurate
modeling and playability, but there is no doubt that
the tools and techniques developed by the game
industry hold great promise for academics and
educators.

A Tested Interface for Free

One of the most important elements to be
gleaned from the gaming community is the set of
user interfaces that have evolved for control of
player movement and view direction. In contrast to
other virtual environments, the typical 3D game has
evolved as an arena for competition between
players, which means there is no room for anything
but the most efficient interface between the player
and the computer. In VRML, on the other hand, the
single worst feature is its viewer interface. Most
VRML players are difficult at best to navigate in;
usually only the mouse is used, often with a very
counterintuitive set of controls. In Cosmo, for
instance, one must grab the center of the screen

and then stretch a line out from it to move in a
certain direction. Compare this to the very natural
and efficient command standard used in Quake
gaming, in which the mouse determines "look"
direction and buttons or keys apply forward,
backward, and sideways motion. The rest of the
interface choices in Cosmo and other VRML clients
just get worse, and there is usually no easy way to
modify them. Quake and other game engines also
offer support for additional human interfaces like
joysticks. Although in some VRML players it is
possible to program a new interface, this can be
time-consuming and difficult.

Perhaps the most important lesson to be
learned from gaming interfaces is that many of
these choices have been made not by the gaming
companies themselves but by the users, over long
periods of trial and error. Game companies
learned long ago to leave interface choices up to
the user, and as a result the users have found the
best combinations for different types of games,
goals, hardware interfaces, and handicaps. This
natural evolution of 3D navigation should not be
ignored, and as the gaming companies learned, it
should always be easy to change.

example is an animator who wishes to model a
scene involving the eruption of a mountain, with
rocks flying into the air. Using old-style raytracing
software, the animator would have been required to
"fake" the paths of the rocks, by defining arbitrary
curves for them to follow. This was because the
rocks were surface representations only, and as
such even if the environment included gravity the
rocks would have no mass for it to affect. Most
packages nowadays do better than this,
implementing some procedural tricks with the
surfaces to give the impression of a gravity
algorithm. However, these tricks are extending
surface data and math beyond its natural and
practical limits. Because the code is based on
mathematical "tricks" it can be implemented in
many different ways. This allows the primary
commercial packages to each come up with their
own method of handling and storing object or
material properties, such as density, tensile
strength, and mass distribution. This makes it
impossible to share this kind of data between
applications, or even within a single software
package. Without this "real" mathematical data,
accurate simulation is impossible, and without a
shared format, the user will find it impossible to
adequately combine models from more than one
application. Most 3D games share these portability
and accuracy issues.

1 Polygonal meshes commonly used for surface
representation are really only good for

visualization and not accurate simulation.

Making It a Sim

Yet another aspect of many 3D
games is representation and simulation of
the natural world. Nearly all such games
implement basic Newtonian forces like
gravity. Other games go much farther. In
Black & White, by Lionhead Studios Ltd.,
the user plays the role of a god who rules
over the population and resources of a
small island. The game simulates
population growth and decline, natural
disasters, disease, and social interaction.
Weather in the game has an impact on the
growth of vegetation and crops. Going
even further, if a user is connected to the
internet, the game can actually check the
player's online local weather report and
simulate these conditions within the game
environment.

Most commercial and open-source
3D games, and raytracing environments for
that matter, focus exclusively on
representation of surfaces. While surface
representation can be adequate for creating
relatively static scenes, more tools and
better data sets are necessary in order to
accurately portray a dynamic world. A good

3D modeling and simulation software and
data desperately needs a common and accurate
mathematical base. Computers are now powerful
enough to provide an answer using functional
representation, 3D point sets, and voxels.
Fortunately, there is already extensive work being
done in these areas, with the HyperFun[4] language
being the best all-encompassing solution. The
language is simple, open-ended, and
heterogeneous, includes data sets like voxels, and
it is multi-dimensional. Using functional
representation and continuous functions means that

animator who is using Poser to do cloth simulation
on a walking human figure, and then needs that
human figure to brush against a tree created in
PlantStudio. She will likely find that while the cloth
has a collision detection algorithm it uses to
respond accurately to the human figure, there is no
such algorithm to enable it to interact with a model
from another program. Furthermore, the cloth
algorithm probably does not include the possibility
of the fabric catching on a branch and tearing,
because this situation does not happen in a
software package focused only on human figures.
In order to have an interaction between models,
there is a need for an open object library that
includes simulation logic, so that cloth, humans,
and trees can be handled within the same
procedural framework.

a model can now be as accurate as
the computer or modeler can make
it. It is no longer limited to arbitrary
polygons along a surface that define
its volume, but instead is defined by
a real function that mathematically
represents its internal structure.
Materials and properties can be
applied, allowing for very accurate
simulation and analysis of models.
We are currently working to
incorporate the HyperFfun language
and specification into the Quake
game engine and web technologies.

HyperFun provides us with
an open framework for accurate
transferable models and a great
foundation for simulation, but does
not provide us with an open
framework for the simulation logic
itself. As an example, consider an

In functional
representation any
object in three-
dimensional space is
defined by a function of
point coordinates
F(x,y,z). This
continuous real-valued
function is positive
inside the object,
negative outside, and
takes zero value on its
surface. Similarly, a
multidimensional object
is defined by a function
of several variables
F(x1, x2, x3, ..., xn). For
example, an object
changing in time can be
defined by F(x,y,z,t) with
t representing time. A
great variety of shapes
can be modeled using
this approach. You can
find many examples at
HyperFun.org

2 AI "Bots" in Quake -
Using procedurally

generated movements
as well as input from
motion capture, these

entities can be
programmed to

interact intelligently
with each other and
with human players.

SEDRIS [2] seems to be
the best hope for an implementation
of a common format for simulation,
and we are excited to see how it
develops. Many vendors readily
support OpenFlight and SEDRIS
formats. We have questions
regarding the depth and breadth of
this support, however. To the best
of our knowledge, there has been
no attempt to apply SEDRIS logic to
any game framework except
OpenFlight, and as part of our
research we hope to make some
contribution toward linking SEDRIS
to the Quake engine.

SEDRIS is a
collaborative
project between the
US government,
industry, and
academia, to
provide a common
standard for
representation of
environmental data,
and loss-less, non-
proprietary
interchange of such
data.

Simulation logic can help an animator with
tasks far beyond simple physical simulations like
cloth behavior and falling rocks. Artificial
intelligence for moving "actors" in the scene is one
prime example. The value of introducing AI into a
raytracing environment was proven dramatically in
the recent film "Lord of the Rings: Fellowship of the
Ring" with the use of the MASSIVE simulator
program, which automated much of the combat AI
for the movie. This enabled the director to create

3 Enichiji Temple Model

the only limitations to detail are the accuracy of the
algorithms employed, and to a lesser extent the
computing time necessary to reach the desired
degree of accuracy. If necessary, the simulation
can be allowed to run for days or weeks to attain
this accuracy. In contrast, the restrictions imposed
on a realtime environment are significant. Even at
a relatively slow frame rate of ten frames per
second (barely adequate for games), all
computation for each frame must be finished within
100 milliseconds. Even on the most powerful
gaming systems, this hardly allows for unlimited
complexity in the simulation model. Many CPU-
intensive algorithms are simply impossible to model
in this environment. In many cases, processes that
are too difficult and time-consuming for true
realtime computation can be precalculated and
rendered into prerecorded animations or stills,
which are then sent to the user as a movie or used
inside the realtime game environment, transparent
to the user. Using a server-client model we can
have real-time interactivity and simulation on a low
power client machine, backed up by super
computers or distributed computing to produce high
detail simulations, images and animations.

Currently, at the University of Aizu, we
have modeled such a system using Quake as the
front end client and Povray as the backend server.
Our test case is a model of Enichiji temple, from the
Aizu region of northern Japan. (For an early
version of the Enichiji model, see [3].) In order to
provide an immersive environment, we have
created a model of this temple which runs in Quake,
and allows the user to climb the stairs, inspect the
internal architecture, and move under, over,
through, or around the temple in full realtime.

For this kind of simulation
to be really effective, a
cross-disciplinary
approach is necessary.
For example, with a
historical simulation, only
part of the "rule set" will
fall within the bounds of
what we would ordinarily
call "history", and the rest
would fall into other
academic fields, such as
physics, architecture,
geography, and botany.

gigantic battle scenes that would
have otherwise required a
prohibitive number of animator
hours. The same concept could
be applied to more peaceful
purposes, enabling animators to
automate the life of an entire
village, for instance, based on a
few simple behavioral rules for
each actor.

The possibilities for
simulation are as infinite as the
complexity of the natural world.
The choice becomes one of
deciding, for a particular

application, what form the simulation should take
and what aspects of reality should be included.

Realtime versus Rendertime

In realtime simulation using gaming
methods, a user can interact with the program, as
well as with other users, in an immersive and
entertaining environment. This ability does not
come without cost, however. In offline simulation,

However, to overcome the unavoidable
limitations on complexity of a realtime application,
the user may at any point choose a view or a path
through a scene to be rendered in greater detail.
Using Povray on a server, a much more complex
model of the chosen scene is rendered, creating
still images or animation to be sent back to the
client and viewed in a separate web browser
window. We are working toward extending the
complexity of this scene, so that in addition to the
temple, there will be a section of terrain, flags
blowing in the wind, various vegetation and rocks,
an animated monk figure, and a flock of crows.
This will give us a better test case for
demonstration, because the interactions among the
wind, the flags, the birds, and the monk's robes will
be impossible to render in Quake at the same level
of detail that would be possible in Povray.

 Another way we have discovered to
combine "rendertime" raytracing with "realtime"

gaming is by offloading complex simulation logic to
an external server. As a trivial example, imagine
stirring cream into a cup of black coffee. The cloud
shapes that swirl around the cup could be
simulated using a particle-based fluid motion
algorithm. However, imagine 1000 of these cups in
the environment, each calculating its “swirl”. This is
almost certainly too much computation to run in a
realtime gaming environment. Instead, it could be
updated not in realtime, but in keyframes. A server
would do the more processor intensive simulation,
allowing the client to do the visualization and morph
between the keyframes sent from the server. The
client would update the server as to what was
happening in the environment, “Did someone just
stir their coffee?” and the server would modify the
simulation. Using this method a simulation would
only be limited by how often the simulation needs
updating, for realism, and how much computing
power is available on the server.

4 Inside the Enichiji Temple Model: on the left are views of the realtime model in low detail able to run
on even a Pentium class processor, on the right are the high detail raytracings delivered to the client in

seconds after the views were selected

Tools and Web Interface

For an offline rendering application, we
chose to use Povray [7], an open source raytracing
program with a number of features that we found
useful. It has a fairly usable scripting language, but
of even greater value was the ability to call an
external application between frames. We use this
option to call our executable program, written in
C++, with the frame number and animation clock
sent as arguments. The C++ code then handles all
moving entities, physics, collision detection, etc.,
and after determining the new position and
orientation for each visible entity in the current
frame, writes out a Povray script file, which is then
rendered.

For our realtime game engine, we are
using a modified version of the Quake game
engine, released by Id Software under the GPL
license. While a game engine has drawbacks in
terms of supporting limited platforms and requiring
users to download a piece of software, we feel that
these limitations are more than balanced out by the
speed, realism, overall versatility and extendability
offered by such a solution. Under GPL, any
historical or educational game created with the
Quake engine can be given away for free or sold
for a profit, providing only that the source code is
made available to the public. For academia, this
should be a plus.

We have specifically chosen the open-
source Quake game engine, because it is one of
the most used 3D game engines. The engine is
fast and small. It was designed 5 years ago for
pentium class machines and therefore has a broad
base of systems on which it can run. However, due
to development by the open user community this
version of Quake has evolved to take advantage of
new hardware and software techniques and has
begun to rival even the latest Quake 3 engine from
Id Software. If a project based on the Quake
engine is managed and engineered properly, it can
have both low-end compatibility and high-end glitz
and hardware optimization in the same application.
In addition, Quake runs on ALL the major desktop
operating systems including Linux. Most
importantly, both Quake and Povray have Free
Software licenses allowing easy modification by
anyone, and solving some serious problems
associated with data transparency. This means
three things: one, that we have a proven 3D code
base to work with; two, that our work and that of
others after us can be preserved; and three,
persons or institutions will be able to make
adjustments or modifications of our work in the

future, without need of our presence or permission.

In the process of our research, we have
also developed a library of C++ code which is
available from our web site. Some of this code
would be redundant to anyone already using a
high-level simulation system such as SEDRIS, but
some of it may have relevance to people wishing to
experiment with procedural approaches to Povray
and/or Quake.

We are also using a backend database
server for storing and sharing simulation data. We
have developed an advanced HTML interface to
manipulate and manage this database over the
web. This allows anyone in the world to make
complex changes in the environment by simply
editing the database through a browser.

Current Work

In addition to adding links to SEDRIS, we
are incorporating a much improved skeletal
animation system utilizing a genetic algorithm to
minimize energy expenditure (See the work of
Schmitt and Kondoh, [5]) and have just finished
adding multi-weighted “bones” to Quake. Our
system now allows each vertex to be influenced by
many different bones, making smooth "blended"
mesh deformation possible in realtime. We also
working to increase our use of particle and voxel
systems for solids representation, and to add links
to the HyperFun library for function representation
of solids (F-Rep).

Our main focus at the moment is to extend
our current network rendering framework using
Quake and Povray. We are working on adding
distributed computing capabilities to server side
simulations. This will allow us to do things like
large scale weather simulations with billions of
particles and then update the Quake client with
relatively little data. We are also working on
making a web browser plugin version of the Quake
client which will allow people to view these
simulations right alongside HTML and not just in
separate window.

Conclusion

We see the combination of simulation tools
with realtime gaming to provide any number of new
ways to involve people in interactive learning
experiences. Also, it has been demonstrated that
an effective application can create a community

around it. This means larger and lasting
participation in given field, exhibition or focus.
Some applications might include:

members of the public about the processes and
forces that impact our lives, our history, and our
future

Acknowledgements

This work would not have been possible without the
support of Drs. Naotoshi and Yuko Takeda of
Shiokawa, Fukushima-ken, Japan; Mr. Kyoichi
Okubo of the Aizu Digital Valley Promotion
Association of Shiokawa, Fukushima-ken, Japan;
Ms. Miyako Aotsu of Aizu-Wakamatsu, Fukushima-
ken, Japan; Id Software and the online Quake
community; the Povray team and online user group;
and the Free / Open Source Software movement.

References

[1] Hampton, S., Moroney, W., Kirton, T. & Biers, D.
(1994). The use of personal computer-based
training devices in teaching instrument flying: A
comparative study. Daytona Beach, US: Embry
Riddle Aeronautical University

[2] SEDRIS. (2001). Synthetic Environment Data
Representation and Interchange Specification. Last
updated 03-May-1998. http://www.sedris.org

[3] Vilbrandt, C., Goodwin, J.M. & Goodwin, J.R.
(2001). Digital Digging: Computer Models of
Archeological Sites:: Enichiji in Aizu, Japan. 2001
PNC Pacific Neighborhood Consortium Annual
Conference and Joint Meetings. Taiwan: Computing
Centre, Academia Sinica

[5] Schmitt,L.M. & Kondoh, T. (2000). Optimization
of Mass Distribution in Articulated Figures with
Genetic Algorithms. Aizu, Japan: University of Aizu

.

[4] V. Adzhiev, R. Cartwright, E. Fausett, A.
Ossipov, A. Pasko, V. Savchenko, (1999).
HyperFun project: a framework for collaborative
multidimensional F-rep. Implicit Surfaces '99,
Eurographics/ACM SIGGRAPH Workshop, J.
Hughes and C. Schlick (Eds.), pp. 59-69,
http://www.hyperfun.org

 Users participate in an industrial process,
run an airplane or automobile factory, or
take part in the operation of an early coal-
fired electric plant.

 A school class becomes the population of
a farming village, and spends the afternoon
planting wheat, learning to fix sheds and
houses using appropriate tools and
resources, deciding what crops to plant,
where to clear forests, where to trade and
what to barter for. They could learn
firsthand the need for pottery, because
when the villagers stack the grain in open
piles or in sheds, the water comes in and
their next year's supply of food rots.
Accurate simulation could guarantee that
the players must build a kiln hot enough to
fire the clay that the villagers dug up
nearby, and that would help determine the
amount of wood that the village harvests.
This sort of game can teach constantly
without the participants ever even becoming
aware of the instruction.

 In an astronomy simulation, users could
view the orbits of the planets around the
sun, or stars around the galactic core. They
could navigate a virtual spaceship or modify
the masses of the stars and planets and
observe the changing gravitational forces.

The content in these facilities could
be updated regularly by non-programmers,

using an HTML interface to the simulation
database. Constantly changing content could keep
people interested and returning to the site to see
what is currently "going on" in the simulation.

As a final note, much of the logic and work
done in the field of modeling and simulation seems
to be related either to violent video games or
military applications. We wish to be part of a move
toward the exploration of more peaceful and
educational subjects for simulation. Considering
the dangers currently faced by heritage sites and
natural resources as a result of human war,
overpopulation, and over consumption, it can only
be a good thing for scientists, educators, and
institutions to have access to better tools with which
to reach out to the general public. Using realtime
game engines can create immersive and
entertaining environments with which to inform

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

