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Abstract

This paper presents work in progress and 
continues a project devoted to developing shape 
modeling system based on implementation of radial 
based function (RBF) technology. In this paper, we 
study the opportunities offered by this technology to 
computer-aided design and computer graphics 
communities by looking at the problems of surface 
generation and enhancement. Experimental results 
are included to demonstrate the functionality of our 
mesh-modeling tool. 
Keywords: radial basis functions, mesh generation, 
simplification 

1. Introduction 

Surface reconstruction and remeshing have 
become very important today for computer-aided 
design (CAD) and computer graphics (CG), and 
Cyber World technologies. For instance, the quality 
of texture mapping depends on the shape of triangular 
elements. These questions are also very important for 
technologies related to engineering applications.  
Construction of a geometric mesh from a given 
surface triangulation has been discussed in many 
papers (see [1] and references therein). The whole 
process involves constructing a geometric mesh 

which is then optimized so as to improve the 
element’s shape quality.  

Point sets obtained by means of computer vision 
techniques are often non-uniform and even contain 
large missing areas of points. Reducing the 
complexity of such data is a challenging goal. Many 
algorithms for conversion and modification of such 
data are computationally expensive. The final goal of 
our project is to allow mesh to be generated from 
scattered point sets for finite element analysis.  
Various automatic mesh generation tools are widely 
used for finite element analysis. However, all of these 
tools may create distorted or ill-shaped elements, 
which can lead to inaccurate and unstable 
approximation. Thus, improvement of mesh quality is 
an almost obligatory step for preprocessing of mesh 
data in finite element analysis. Recently, sampled 
point clouds have received much attention in the CG 
community for visualization purposes (see [2,3]) and 
CAD applications (see [4,5]). Their information is 
processed by surface reconstruction algorithms and 
subsequently simplified and denoised. In spite of a 
flurry of activity in the fields of scattered data 
reconstruction, interpolation, and mesh modification, 
this matter remains a difficult and computationally 
expensive problem.  

A vast amount of literature has been devoted to the 
subject of scattered data interpolation methods (see, 
for instance, [6,7]). Our work is primarily focused on 
the efficiency of implementation of radial basis 
functions (RBFs). This paper presents work in 



progress, and continues a project devoted to 
developing a system for shape modeling based on 
implementation of RBF technology. We report our 
preliminary results, and study the opportunities 
offered by this technology for CAD and CG 
communities by looking at the problems of surface 
generation and enhancement, which include polygon 
generation from unorganized points and shape 
smoothing, simplification, and improvement of mesh 
quality parameters of 3D polygonal sets.    

Surface reconstruction methods can be broadly 
classified into global and local approaches.  We 
show the applicability of compactly supported radial 
basis functions (CSRBFs) for local surface 
reconstruction by using a slightly modified Shepard 
method [8] for the case of restoration of elevation 
data. A space-mapping technique (mapping R3 to R3 )
based on RBFs is a powerful tool, which offers 
simple and quite general modification of simulated 
shapes. Thus the second goal is to apply a 
space-mapping technique based on RBFs to 
automatically defined portions of the input data to be 
simplified, and the third goal is to realize a local 
mesh enhancement based on the statistical 
characteristics of an initial triangle mesh. 

Main contribution of the paper is a surface 
simplification method which uses the fact that RBFs 
offer a mechanism for obtaining extrapolated points 
of a surface. We present an approach for obtaining a 
realistic time response for sufficiently complex 
models (70K triangles). This approach is based on the 
idea of obtaining 3D coordinates according to a 
bending energy.  

An analysis of existing methods has defined a 
central concept of our project: we consider that local 
surface reconstruction performed on point sets, 
triangle mesh extraction, and mesh simplification 
with simultaneous mesh improvement are integral 
parts of the project. 

The rest of the paper is organized as follows. The 
next section gives an overview of papers related to 
this work. An algorithm for recovering surfaces by 
implementing the partition of unity is presented in 
Sec. 3. We discuss the simplification algorithm in Sec. 
4, Sec. 5 presents experimental results, and sec. 6 
contains concluding remarks.  

2. Related works 

In the last few years, surface reconstruction, 
smoothing, and remeshing have been studied 
intensively and several effective numerical 

algorithms have been reported. One approach is to 
use methods of scattered data interpolation based on 
minimum-energy properties (see [ 9 , 10 , 11 ]). The 
benefits of modeling with the help of RBFs have been 
recognized in many studies. To the best of our 
knowledge, the first publications on the use of 
discrete 2D landmark points were those of Bookstein 
[12]. RBFs were adapted for surface reconstruction in 
[13,14]. Methods of reconstructing a model on the 
basis of global reconstruction by using RBFs and 
CSRBFs produce sufficiently good approximations of 
a surface, but they suffer from two drawbacks: they 
take a great deal of time, and artifacts or “ghost” 
objects can appear as a result of the extraction of a 
surface from implicitly defined functions (see recent 
work such as [15]). To overcome the necessity of 
using normals to the surface and avoid extraction of 
an implicitly defined isosurface, one possible way, 
which is considered in our project, is to implement a 
local approximation based on the Shepard method 
[8], the so called partition of unity. Here we consider 
a slight modification of the Shepard method using 
CSRBFs as support functions, and information about 
the surface curvature.  

Complex and detailed models can be generated by 
3D scanners, and such models have found a wide 
range of applications in CG and CAD, particularly in 
reverse engineering. Nevertheless, it is useful to have 
various simpler versions of original complex models 
according to the requirements of applications. 
Recently, a tremendous number of very sophisticated 
algorithms have been invented to obtain a simplified 
model. One exceedingly good overview [16] presents 
a problem statement and a survey of polygonal 
simplification methods and approaches. Most existing 
simplification algorithms use such topological 
operations as vertex decimation, edge decimation, 
and triangle decimation. Vertex decimation methods 
remove a vertex according to a decimation cost 
defined by an error metric. In [17], an extremely fast 
simplification method based on a probabilistic 
optimization technique was proposed.  

In different applications, especially in finite 
element analysis, the quality of the surface 
polygonization is also important (see, for instance, 
[1]).  Two main ways of improving mesh quality 
exist. One is so-called clean-up, which modifies mesh 
topology by inserting or deleting nodes, or by local 
reconnection. However, sometimes it is necessary to 
minimize changes in the topology of a surface. 
Therefore, there are methods that improve mesh 
quality without any topological changes. The 
approach is called smoothing. Many smoothing 



techniques have been developed. Among the earliest
methods are Laplacian smoothing [ 18 ] and its 
variations. In recent years, the CG community has
paid more attention to mesh smoothing based on a 
signal processing approach, pioneered by Taubin in
1995 [19].

According to our experience, when the original
model is simplified to less than 70 percent of its
original complexity (see Figure 1), there is almost no 
visual difference between the original and simplified
meshes. The simplification methods preserve the
original shape quite well. Nevertheless, our
implementation of the edge contraction method uses
the idea of finding an optimal position based on
minimization of a bending energy to place a new
vertex. As our experiments show, such a scheme does
not cost a great deal of time, and allows a rather
reasonable simplification ratio of 90% reduction of
the number of original points to be obtained.

3. Generation of Polygonal Data Sets 

Recently, Wendland [20] constructed a new class
of positive definite functions for 1D, 3D, and 5D
spaces of the form

(r) = ,
1,0

10,

r

rr

where r is a univariate polynomial whose radius
of support is equal to 1. Scaling of the function

/r allows any desired radius of support .
Nevertheless, even the use of CSRBFs does not
provide a reasonable processing time for rather
moderately sized point sets. Finite element methods
(FEMs) are applied for restoration of scattered data,
but they also have various drawbacks. From our point
of view, methods based on the idea of local
reconstruction are promising in CAD and CG
applications dealing with huge amounts of scattered
data.

The partition of unity method (PUM) for the 
construction of interpolation and approximation was 
pioneered by Shepard [8] and was later extended by
Franke and Nielson [6]. In recent years, it has 
received much attention due to the works of Melenk 
and Babuska [21] and Krysl et al. [22].

Shepard’s approximation on a set of scattered
points x of domain  is as follows:

uh(x) = 
N

I 1

I(x) uI ,

where uI are the nodal parameters, and I(x) are the 

basis functions of compact support. They are
constructed from weight functions W I(x) by means of 
the formula

I(x) = W I(x)/ W
N

k 1

 k(x).

In this work, we have used the CSRB function

W I(x) = ,
1,0
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where r = x – xI is the Euclidean distance between
an interpolated point and an input point, and N is the 
number of points in a predefined area. Other choices
of the weight function are also acceptable; however,
theoretical proofs can be given to show that, to
achieve extrapolation efficiency, weight functions,
with small third derivatives should be used. 

A general cover construction algorithm or partition 
of the domain  into overlapping rectangular patches

I to cover the complete domain has to be used. Let
us note that our main premise is to take account of a
surface curvature that might be useful for correct
choice of a radius of support (r-sphere) for 
reconstruction taking into consideration the 
orientations of local surface elements. In our work, 
we have investigated rather a simple scheme taking
account of the local geometry of a surface. 

In our software implementation, we employ a 
standard approach for creating a binary tree from an
initial point data set with an additional required 
parametric value K, which denotes the maximum
number of points in a leaf. Once we have calculated
the tree, we use this tree to search for the neighbors
of any given point. Hoppe et al. [4] have
demonstrated that eigenvalues 1, 2, and 3 of the
covariance matrix of neighboring points could be
used to produce normal estimates. These values 1, 2,
and 3 also describe the surface variation  and serve
as an analog of a surface curvature. They also define
the orientation of an ellipsoid containing the data. If
the surface variation  is larger then 0.3  that is, if 
the data demonstrate a strong deviation from an
average plane we attract data from additional
neighboring cells in accordance with the ellipsoid’s
orientation and increase the r-sphere. Figure 4(a)
shows the surface variation  of the elevation data.

4. Simplification Algorithm 

Metrics based on object geometry properties are
mainly used in simplification algorithms. Current
simplification algorithms might be made more
effective if an algorithm could produce an



approximation of the simplified surface. In fact, we
present an attempt to combine a simplification
process with a surface approximation based on the
use of RBFs.

Here, we shall give a short account of the shape
transformation method used in the applications
considered in this paper (for further references, see
[23]). A space mapping in Rn defines a relationship
between each pair of points in the original and
deformed objects. For an arbitrary three-dimensional
area , the solution of the problem is well known: the
volume spline f(P) having values hi at N points Pi is 
the function

f(P) = 
N

j 1

j  (|P - Pj|) + p(P),   (1)

where p = 0 + 1x + 2y + 3z is a degree one
polynomial. To solve for the weights j we have to
satisfy the constraints hi by substituting the right part
of equation (1), which gives

hi = 
N

j 1

j (|Pi - Pj|) + p(Pi), (2)

Solving for the weights j and 0, 1, 2, 3 it
follows that in the most common case there is a
doubly bordered matrix, which consists of three
blocks, square sub-matrices A and D of size N  N 
and 4  4 respectively, and B, which is not
necessarily square and has the size N  4.

We employed an approach that uses displacements
of N control points as the difference between the
initial and final geometric forms. Interpolation of
(x,y,z) points is implemented in R3 and defines a
relationship between the coordinates of points in the 
original and deformed objects. The inverse mapping
function that interpolates the z-heights and is needed
to calculate destination points z d is given in the form

  zs = f(P) +zd , (3)

where the components of the volume spline f(P)
interpolating displacements of starting points zs are
used to calculate points to be processed.

Finding the optimal decimation sequence is a 
complex problem. The traditional strategy is to find a 
solution that is close to optimal; this is a greedy
strategy, which involves finding the best choice
among all candidates. Our simplification algorithm is 
based on an iterative procedure for performing
simplification operations. In each iteration step,
candidate points for an edge collapse are defined
according to a local decimation cost of points
belonging to a shaped polygon. After all candidates
have been selected, we produce a contraction step by

choosing an optimal point.
In our implementation, we used and compared the

computation of local decimation costs in two ways.
The simplest way is to compute a decimation cost as
a minimal distance between the central point of
shaped polygon and those of its neighbors. Another
way is to apply a specific error metric. We propose
using the bending energy htA-1h as an error/quality
cost to select candidates for an edge collapse. The
central point of a shaped polygon is considered as a 
point that can slide to the neighboring points. The 
selection of candidate points is made according to the
bending energy. The degree of contraction operation
is estimated by minimizing the bending energy. We
exploit a simple idea that the more smoothly we
transform a central point, the fewer residuals there
will be between an initial mesh and the subsequent
mesh. In this step, we form a list of points to be
contracted; this list contains a number of candidate
points. In the contraction step we eliminate
processing of points that can be contracted twice or
more.

Vertex placement is produced in two steps. In the
first step we generate an optimal position on the line 
connecting two vertices of an edge to be contracted.
Our main premise here is to use the bending energy to
obtain the “best approximated surface”. Recall that 
the spline (2) (determined by the set of variable
control points Pi that belong a union of two shaped
polygons) provides a minimization of the bending
energy htA-1h, where hi are so-called heights, for the
case in which space transformations hi = Y0

i - X0
i

are the initial and final points. To find an optimal
point we use an approach of spline relaxation along
line elements, pioneered by Bookstein for the 2D case
[12]. It allows the spline method to be extended so
that some of the target 3D landmarks are free to slide
along lines; in our case, two vertices belonging the
edge collapse slide in 3D from their nominal
positions Y0 along the directions uj = (ujx, ujy,ujz) over
the lines Y0

 ij + tjuj; tj T (parameter vector). Let us
note that neighboring points are not free to slide.

The solution to this problem is achieved for the
parameter vector T over which the energy of the
corresponding spline is minimized:

T = -(Ut L-1U) -1Ut L-1 Y0,

where the matrix L is a block-diagonal matrix
consisting of three A matrices. When the parameter
vector T is defined, an optimal point belonging to the
line connecting two contracted vertices is calculated. 
In fact, the optimal point is generated at the next step
according to the following scheme:



Define a tangent or an average plane passing
through the point calculated in the previous step.
Once we have information about the neighboring
points, which can be achieved by estimating the
tangent plane, we can estimate the local surface
properties. The values 1, 2, and 3 describe the
surface variation and can serve as an analog of a
surface curvature that is used for generation of 
polygonal data sets to make a decision about the
complexity of the local reconstruction area. Assuming
that 1 is minimal, 1 describes the variation along
the surface normal, and the directions corresponding 
to the eigenvalues 2, 3 define a tangent plane; we
proceed as follows:

Apply a rotation to the neighboring points so
that the nearest plane is perpendicular to the
z-direction.

Calculate the differences or deviations for local 
z-directions that define the inverse mapping function
(3).

Apply a transformation for the selected point.
Produce an inverse rotation of the calculated

point.
Let us note that the surface variation  can be used

as an estimation of a local curvature of current mesh
to distinguish the areas having different geometric
characteristics for preserving object features.
Afterwards, when the original model has been
simplified, we repeat the above steps to produce new
updates.

5. Examples 

All the examples in this paper were run on our test
configuration: AMD Athlon 1000 MHz, 128

MBRAM, Microsoft® Windows 2000, and ATI
Radeon 8500 LE.

We demonstrate our work on four models. In
Figure 1 we show that the algorithm exhibits very
good features when a model is simplified to 30% of
its original complexity. Figure 2 shows examples of
polygon simplification of a modified “Stanford
Bunny” to demonstrate the preservation of sharp
features of the initial model.

(a)                   (b)

Figure 1. (a) Original “horse” model (96966 triangles),
(b) Simplified model produced accordingly to our
approach (30% of the original number of triangles).

We compare our approach with the software
algorithm from [24]. As can be observed in Figure 2,
our simplification algorithm does not provide such a
good quality of simplification as the algorithm given 
in [24]. However, it has the advantages that the
processing time is almost three times as fast, and no
user-tuned parameters are required. At the same time,
it guarantees overall smoothness and preservation of
features. The results of time estimation are given for 
non-optimized code.

      (a)                (b)               (c)              (d)              (e)               (f)

Figure 2. (a) Modified “Stanford Bunny” model, simplified according to the algorithm [24] (30% of original data,
processing time: 158.989 sec). (b) Simplified model (30%) using a simple geometric error metric. (c) Simplified
model according to our approach (30%, processing time: 59.737 sec). (d) Model simplified according to the
algorithm [24] (10% of original data, processing time: 246.124 sec). (e) Simplified model (10%) using a simple
geometric error cost. (f) Model simplified according to our approach (10%, processing time: 70.521 sec).

In fact, PUM does not provide overall smoothness,
nevertheless, it can be improved by applying RBF

smoothing. Let us note that we process points nearest
to the point that should be moved, according to the



scheme defined for placement of an optimal point, as 
was discussed in Section 4. Figure 3 shows the effect
of RBF smoothing of polygonal surfaces. To define
the inverse mapping function, a different number of
vertices N can be used for interpolation. The larger
the number N we select, the more features will be
preserved by the smoothing. To achieve a better

smoothing effect, several iterations of the smoothing
algorithm could be applied. Figure 4 shows the
results of reconstruction using the approach discussed
in section 3.

(a)                                         (b)

Figure 3. (a) The original “Stanford Bunny” model (69451 polygons). (b) Smoothed model after one iteration based
on 11-point interpolation. Processing time: 4.7 sec. 

                (a)                             (b)                           (c)

Figure 4. Implementation of the partition of unity for generation of polygons from scattered data of the fragment of
Mount Bandai: (a) Curvature analysis. In the blue area, the surface variation  > 0.3. (b) Result of reconstruction
(ray tracing). Number of scattered points: 10000, processing time: 0.941 sec, number of vertices after 
reconstruction: 90000. (c) Fragment of the mesh as a wire-frame with color attributes according to calculated
heights.

                 (a)                      (b)                     (c)                    (d)

Figure 5. Surface reconstruction of a technical data set. (a) Cloud of points (4100 scattered points are used).
(b) Simplified mesh shaded (processing time: 0.1 sec). (c), (d) Fragments of the mesh as wire-frame
(7141 vertices).

Figure 5 shows an implementation of the PUM for
generation of polygonal surfaces for point sets 

represented by elevation data. We demonstrate the 
applicability of the approach to data homeomorphic



to a disc; nevertheless, since a closed object can be
partitioned into a collection of bordered patches 
homeomorphic to a disc, this is no serious restriction,
as it was mentioned in Horman and Greiner [25].

It can be observed that the simplification
algorithm demonstrates the smoothness inherited
from the original data sets, and exhibits denser
triangulation in the areas with higher curvatures (see
Figure 5(c)). Actually, this is an advantage of our
approach: instead of applying a complicated fairing
technique we apply a rather simple local
approximation. Nevertheless, despite the many
practical applications of triangle meshes in CG, there 
are applications such as FEM where well-shaped
triangulations are needed; in addition to the 
deterioration in the accuracy of calculations, speed
may be sacrificed in some applications. Still, well
shaped triangulations may in fact be useful, as was 
mentioned in [26]: “forty-odd years after the
invention of the finite element method, our
understanding of the relationship between mesh
geometry, numerical accuracy, and stiffness matrix
conditioning remains incomplete, even in the 
simplest cases.” 

In spite of that the average aspect ratio for the
mesh shown in Figure 5 is 1.46. Figure 5(d)
demonstrates that there are many badly shaped
triangles, especially in the almost vertical parts of the
model.

            (a)                     (b)

Figure 6. (a) Fragment of the initial mesh, 31234
triangles. (b) Combined mesh modification (polygon
reduction and statistical improvement of the mesh), 
12132 triangles.

There are many optimization techniques for
optimal point placement, most of them based on the
idea of local optimization. We are now investigating a 
statistical approach for triangles enhancement (a
description of the algorithm is omitted because of
constraints on space). Essentially, the algorithm can 
be used in combination with the edge collapse 
algorithm, which allows us to select new points more

gently, as shown in Fig. 6 (b).

6. Conclusion 

We have developed a set of algorithms to
reconstruct and improve a surface obtained from a set 
of unorganized points. RBFs seem ready-made for
many applications in CAD and CG, even for such
applications as simplification and nearly interactive 
reconstruction of 3D models.

There is no single restoration and simplification
method that provides the best results for every
surface in the sense of quality and processing time.
Experimental results indicate that the algorithms
proposed in this paper provide rather good results and
look promising for implementation in CAD and 
computer-aided engineering applications. It is
proposed to use the bending energy htA-1h as an 
error/quality cost to select candidates for edge 
collapse. More sophisticated optimization strategies, 
such as greedy optimization, can probably be
combined with the proposed in the paper strategy. Let 
us note here that, for example, in Figure 6, the
volume was rather well preserved, with a difference
between the initial mesh and the processed one of
about 0.65%. One shortcoming of the approach
discussed in section 3 is that in some areas (almost
vertical) of a surface the triangular vertices may be 
spaced far apart. Selecting local data sets in the
reconstruction algorithm according to the surface
curvature is still an interesting research topic waiting 
for a solution. Our most urgent problem is to extend 
the algorithm given in section 3 to provide adaptive 
remeshing (enriching) according to local features of a
surface geometry. Another future plan is to provide a
posterior error estimation by means of a finite
element solution. 
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